Migration in the social stage of Dictyostelium discoideum amoebae impacts competition
نویسندگان
چکیده
Interaction conditions can change the balance of cooperation and conflict in multicellular groups. After aggregating together, cells of the social amoeba Dictyostelium discoideum may migrate as a group (known as a slug) to a new location. We consider this migration stage as an arena for social competition and conflict because the cells in the slug may not be from a genetically homogeneous population. In this study, we examined the interplay of two seemingly diametric actions, the solitary action of kin recognition and the collective action of slug migration in D. discoideum, to more fully understand the effects of social competition on fitness over the entire lifecycle. We compare slugs composed of either genetically homogenous or heterogeneous cells that have migrated or remained stationary in the social stage of the social amoeba Dictyostelium discoideum. After migration of chimeric slugs, we found that facultative cheating is reduced, where facultative cheating is defined as greater contribution to spore relative to stalk than found for that clone in the clonal state. In addition our results support previous findings that competitive interactions in chimeras diminish slug migration distance. Furthermore, fruiting bodies have shorter stalks after migration, even accounting for cell numbers at that time. Taken together, these results show that migration can alleviate the conflict of interests in heterogeneous slugs. It aligns their interest in finding a more advantageous place for dispersal, where shorter stalks suffice, which leads to a decrease in cheating behavior.
منابع مشابه
Cost of movement in the multicellular stage of the social amoebae Dictyostelium discoideum and D. purpureum
متن کامل
Dictyostelium discoideum as a Novel Host System to Study the Interaction between Phagocytes and Yeasts
The social amoeba Dictyostelium discoideum is a well-established model organism to study the interaction between bacteria and phagocytes. In contrast, research using D. discoideum as a host model for fungi is rare. We describe a comprehensive study, which uses D. discoideum as a host model system to investigate the interaction with apathogenic (Saccharomyces cerevisiae) and pathogenic (Candida ...
متن کاملSignal relay during chemotaxis
The ability of cells to migrate in response to external cues, a process known as chemotaxis, is a fundamental phenomenon in biology. It is exhibited by a wide variety of cell types in the context of embryogenesis, angiogenesis, inflammation, wound healing and many other complex physiological processes. Here, we discuss the signals that control the directed migration of the social amoebae Dictyo...
متن کاملEvidence for a second chemotactic system in the cellular slime mold, Dictyostelium discoideum.
An unknown substance found in bacteria (Escherichia coli) is especially effective in attracting the vegetative amoebae of the cellular slime mold, Dictyostelium discoideum. However, the aggregating amoebae are not attracted to it at all. On the other hand, the vegetative amoebae show very little chemotactic response to cyclic adenosine monophosphate (cyclic AMP), whereas the aggregating amoebae...
متن کاملMigration and thermotaxis of dictyostelium discoideum slugs, a model study
Dictyostelium discoideum slugs show a pronounced thermotaxis. We have modelled the motion of the D. discoideum slug in the absence and in the presence of a thermal gradient. Our model is an extension of the hybrid cellular automata/partial differential equation model, as formulated by Savill and Hogeweg [J. theor. Biol., (1997) 184, 229-235]. The modelled slugs maintain their shape and crawl, w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 3 شماره
صفحات -
تاریخ انتشار 2015